
www.manaraa.com

Data Structure Fusion

Peter Hawkins, Alex Aiken, Kathleen Fisher, Martin Rinard, and Mooly Sagiv

Stanford University, AT&T Labs Research, MIT, Tel Aviv University

Abstract. We consider the problem of specifying data structures with
complex sharing in a manner that is both declarative and results in
provably correct code. In our approach, abstract data types are speci-
fied using relational algebra and functional dependencies; a novel fuse
operation on relational indexes specifies where the underlying physical
data structure representation has sharing. We permit the user to specify
different concrete shared representations for relations, and show that the
semantics of the relational specification are preserved.

1 Introduction

Consider the data structure used in an operating system kernel to represent the
set of available file systems. There are two kinds of objects: file systems and
files. Each file system has a list of its files, and each file may be in one of two
states, either currently in use or currently unused. Figure 1 sketches the data
structure typically used:1 each file system is the head of a linked list of its files,
and two other linked lists maintain the set of files in use and files not in use.
Thus, every file participates in two lists: the list of files in its file system, and
one of the in-use or not-in-use lists. A characteristic feature of this example is
the sharing: the files participate in multiple data structures. Sharing usually
implies that there are non-trivial high-level invariants to be maintained when
the structure is updated. For example, in Figure 1, if a file is removed from a file
system, it should be removed from the in-use or not-in-use list as well. A second
characteristic is that the structure is highly optimized for a particular expected
usage pattern. In Figure 1, it is easy to enumerate all of the files in a file system,
but without adding a parent pointer to the file objects we have only a very slow
way to discover which file system owns a particular file.

We are interested in the problem of how to support high-level, declarative
specification of complex data structures with sharing while also achieving ef-
ficient and safe low-level implementations. Existing languages provide at most
one or the other. Modern functional languages provide excellent support for
inductive data structures, which are all essentially trees of some flavor. When
multiple such data structures overlap (i.e., when there is more than one induc-
tive structure and they are not separate), functional languages do not provide
any support beyond what is available in conventional object-oriented and pro-
cedural languages. All of these languages require the programmer to build and
maintain mutable structures with sharing by using explicit pointers or reference

1 This example is a simplified version of the file system representation in Linux, where
file systems are called superblocks and files are inodes.

www.manaraa.com

filesystems

filesystem

s list

s files

file

f list

f fs list

file

f list

f fs list

file

f list

f fs list

filesystem

s list

s files

file

f list

f fs list

file

f list

f fs list

file in use file unused

Fig. 1. File objects simultaneously participate in multiple circular lists. Differ-
ent line types denote different lists.

cells. While the programmer can get exactly the desired representation, there is
no support for maintaining or even describing invariants of the data structure.

Languages built on relations, such as SQL and logic programming languages,
provide much higher-level support. We could encode the example above using
the relation:

file(filesystem : int,fileid : int, inuse : bool)

Here integers suffice as unique identifiers for file systems and files, and a boolean
records whether or not the file is in use. Using standard query facilities we can
conveniently find for a file system fs all of its files file(fs, ,) as well as all of the
files not in use file(, , false). Even better, using functional dependencies we can
specify important high-level invariants, such as that every file is part of exactly
one file system, and every file is either in use or not; i.e., the fileid functionally
determines the filesystem and inuse fields. Thus, there is only one tuple in the
relation per fileid, and when the tuple with a fileid is deleted all trace of that
file is provably removed from the relation. Finally, relations are general; since
pointers are just relationships between objects, any pointer data structure can be
described by a set of relations. Adding relations to general-purpose programming
languages is a well-accepted idea. Missing from existing proposals is the ability
to provide highly specialized implementations of relations, and in particular to
take advantage of the potential for mutable data structures with sharing.

Our vision is a programming language where low-level pointer data structures
are specified using high-level relations. Furthermore, because of the high-level
specification, the language system can produce code that is correct by construc-
tion; even in cases where the implementation has complex sharing and destruc-
tive update, the implementation is guaranteed to be a faithful representation of
the relational specification. In this paper, we take only the first step in realizing
this plan, focusing on the core problem of what it means to represent a given
high-level relation by a low-level representation (possibly with sharing) that is
provably correct. We do not address in this paper the design of a surface syntax
for integrating relational operations into a full programming language (there are
many existing proposals).

This paper is organized into several parts, each of which highlights a separate
contribution of our work:
– We begin by describing three examples of data structure specification. Our

approach separates the semantic content of a data structure from details of

www.manaraa.com

its implementation, while allowing the programmer to control the low-level
physical representation (Section 2).

– A key contribution is the design of a language for specifying indices, which
are a mapping between a relational specification and concrete data struc-
tures. (Section 3). This language allows us to define cross-linking and fusion
constructs which, although common in practice, express sharing that is dif-
ficult or impossible to express using standard data abstraction techniques.

– We describe adequacy conditions that ensure that the low-level representa-
tion of a relation is capable of implementing its higher-level specification.

– We describe the implementations of the core relation primitives, and we prove
that the low-level implementations are sound with respect to the higher-level
specifications (Section 4 and Section 5).
Due to space limitations we have not included all supporting lemmas or any

proofs in this paper. All lemmas and proofs are in the on-line tech report [10].

2 Relation Representations and Indices

In this section we motivate and describe three different representations for re-
lations, at different levels of abstraction, using three examples: directed graphs,
a process scheduler, and a Minesweeper game. The highest level is the logical
representation of a relation, which is the usual mathematical description of a
finite relation as a set of tuples. The lowest level is the physical representation of
a relation, which represents a relation in a program’s heap using pointer-based
data structures. Bridging the gap we have an intermediate tree decomposition of
a relation, which decomposes the relation into a tree form corresponding to an
index without yet committing to a specific physical representation.

First, we need to fix notation.

Values, Tuples, Relations For our formal development we assume a universe of
untyped values V, which includes the integers, that is, Z ⊆ V. We write v to
denote one value, v for a sequence of values, and V to denote a set of values.

A tuple t = 〈c1 7→ v1, c2 7→ v2, . . . 〉 is a mapping from a set of columns
{c1, c2, . . . } to values drawn from V. We write t(c) to denote the value of column
c in tuple t, and we write t(c) to denote the sequence of values corresponding to
a sequence of columns. We write s ⊆ t if the tuple t is an extension of tuple s,
that is we have t(c) = s(c) for all c in the domain of s. In an abuse of notation
we sometimes use a sequence of columns c as a set. A relation r is a set of tuples
{x, y, z, . . . } over the same set of column names C.

Relational Algebra We use the standard notation of relational algebra [6]: union
(∪), intersection (∩), set difference (\), selection σf r, projection πC r, projection
onto the complement of a set of columns C: πC r, and natural join r1 ./ r2; we
also allow tuples in place of relations as arguments to relation operators.

2.1 Logical Representation of Relations

We begin with the problem of representing the edges of a weighted directed
graph (V,E) where E ⊆ V × Z× V . We return to this example throughout the
paper. One popular way to represent sparse graphs is as an adjacency list, which

www.manaraa.com

emptyd : unit→ (α1, . . . , αk) relationd

insertd : α1 ∗ · · · ∗ αk → (α1, . . . , αk) relationd → unit

removed : α1 ∗ · · · ∗ αk → (α1, . . . , αk) relationd → unit

queryd : (α1, . . . , αk) relationd → α1 option ∗ · · · ∗ αk option→ (α1 ∗ · · · ∗ αk) list

Fig. 2. Primitive operations on logical relations

records the list of successors and predecessors of each vertex v ∈ V . In ML, we
might represent a graph via adjacency lists as the type

type g = (v, (v ∗ int) list) btree ∗ (v, (v ∗ int) list) btree,

assuming v is the type of vertices, and (α, β) btree is a binary tree mapping keys
of type α to values of type β. Here the graph is represented as two collaborating
data structures, namely a binary tree mapping each vertex to a list of its succes-
sors, together with the corresponding edge weights, and a binary tree mapping
each vertex to a list of its predecessors, and the corresponding edge weights.

One problem with our proposed ML representation is that the successor and
predecessor data structures represent the same set of edges; however it is the pro-
grammer’s responsibility to ensure that the two data structure representations
remain consistent. Another problem is that with only tree-like data structures
there is no natural place to put the edge weight—we can place it in either the
successor data structure or the predecessor data structure, increasing the time
complexity of certain queries, or we can duplicate the weight, as we have here,
which increases the space cost and introduces the possibility of inconsistencies.

Instead, we can use a relation. We represent the edges of our directed graph as
a relation g with three columns (src, dst ,weight), in which each tuple represents
the source, destination, and weight of an edge. The graph shown in Figure 5(a)
can be represented as the relation {〈1, 2, 17〉 , 〈1, 3, 42〉}. We call the usual math-
ematical view of a relation as a set of tuples the logical representation.

We extend ML with a new type constructor (α1, . . . , αk) relation which rep-
resents relations of arity k, together with a set of primitive operations to ma-
nipulate relations. Relations are mutable data structures conceptually similar to
(α1 ∗ · · · ∗ αk) list ref, with a very different representation. The primitives with
which the client programmer manipulates relations, shown in Figure 2, are cre-
ating an empty relation, operations to insert and remove tuples from a relation,
and query, which returns the list of tuples matching a tuple pattern, a tuple in
which some fields are missing. We describe a minimal interface to make proofs
easier; a practical implementation should provide a richer set of primitives, such
as an interface along the lines of LINQ [15].

2.2 Indices and Tree Decompositions

The data structure designer describes how to represent a logical relation using
an index, which specifies how to decompose the relation into a collection of
nested map and join operations over unit relations containing individual tuples.
Different decompositions lead to different operations being particularly efficient.
We do not maintain an underlying list of tuples; the only representation of a

www.manaraa.com

d ::= unit(c) | map(ψ, c, d′) | join(d1, d2, L) indices

ψ ::= option | slist | dlist | btree data struct.

l ∈ L ::= (fuse, z1, z2) | (link, z1, z2) cross-links

z ∈ contour ::= {m, l, r}∗ stat. contours

y ∈ dcontour ::= {mv, l, r}∗ dyn. contours

Fig. 3. Syntax of indices

relation is that described by an index. Beyond the index definition programmers
can remain oblivious of details of how relations are represented.

Every relation r has an associated index d describing how to decompose the
relation into a tree and how to lay that tree out in memory; Figure 3 shows
the syntax of indices. Given an index d and a relation r we can form a tree
decomposition ρ whose structure is governed by d; Figure 4 defines the syntax of
tree decompositions. There are three kinds of index that we can use to decompose
a relation, each of which has a corresponding kind of tree-decomposition node:
– Joins allow the data-structure designer to specify how to divide the rela-

tion into pieces. These pieces can have different structures, each supporting
different access patterns efficiently. We require that the natural join of the
pieces be equal to the original relation. Formally, a join(d1, d2, L) index rep-
resents a relation as the natural join of two different sub-relations (ρ1, ρ2),
where d1 is an index that describes how to represent ρ1 and d2 is an index
that describes how to represent ρ2. The set L consists of cross-linking and
fusion declarations, which we will describe shortly.

– Maps allow the data-structure designer to specify that certain columns of
the relation can be used to lookup other columns. The map operator allows
the programmer to specify the data structure ψ that should be used for this
mapping, with options including singly- and doubly-linked lists and binary
trees. Formally, a map(ψ, c, d′) index represents a relation as a mapping
{vi 7→ ρi}i∈I from a sequence of key columns c to a set of residual relations
ρi, one for each valuation vi of the key columns. We further decompose each
residual relation ρi using an index d′.

– Unit indices are the base case, and represent individual tuples. Formally, a
unit(c) index represents a relation over a sequence of columns c with cardi-
nality either 0 or 1; such a relation can either be the empty set {}, or contain
a single sequence of values {v}.
We assume we are given correct implementations of a set of primitive data

structures such as singly- and doubly-linked lists and trees. Our focus is on
assembling such building blocks into nested and overlapping data structures.

Static Contours We annotate each term in the index with a unique name called a
static contour. Formally, a static contour z is a path in an index d which identifies
a specific sub-index d′. A static contour z is drawn from the set {m, l, r}∗, where
m means “move to the child index of a map index”, l means “move to the left
sub-index of a join index”, and r means “move to the right sub-index of a join
index”. We write d.z to denote the sub-index of d identified by a contour z.

In our directed graph we want to find the set of successors and find the set
of predecessors of a vertex efficiently. One index that satisfies this constraint is

www.manaraa.com

ρ ::= {} | {v} | {vi 7→ ρi}i∈I | (ρ1, ρ2)

Fig. 4. Tree decompositions

dg = join·(mapl(btree, [src],maplm(slist, [dst], unitlmm([weight]))),
mapr(btree, [dst],maprm(slist, [src], unitrmm([]))), {(fuse, rmm, lmm)})

The index dg states that we should represent the relation as the natural join of
two sub-indices. The left sub-index is a binary tree mapping each value of the
src column to a distinct singly-linked list, which in turn maps each dst column
value (for the given src) to its corresponding weight . The right sub-index is a
binary tree mapping each value of the dst column to a linked list of src values.

Tree Decompositions An index determines a useful intermediate representation
of the associated relation, decomposing it into a tree according to the operations
in the index. We call this representation the tree decomposition of a relation. As
an example, Figure 5(b) depicts the tree decomposition ρ of the graph relation
g given index dg. We write ρ mathematically as(·{l

1 7→
{lm12 7→ {lm1m2〈17〉}, 3 7→ {lm1m3〈42〉}

}}
,{r

2 7→
{rm21 7→ {rm2m1〈〉}

}
, 3 7→

{rm31 7→ {rm3m1〈〉}
}})

,

(1)

Dynamic Contours We assign each term of a tree decomposition a unique label,
called a dynamic contour. A dynamic contour y is a path in a tree decomposition
ρ under index d that identifies a specific subtree of ρ. Each dynamic contour in
a tree decomposition corresponds to an instance of a static contour in an index.
In a dynamic contour we annotate the m operator with a sequence of key values
v; a tree decomposition via a map index has one subtree for each sequence of key
values, and hence when navigating to a subtree we must specify which subtree
we mean. We do not need any extra dynamic information for a join index, so
we leave the l and r operators unannotated. For example, the part of the tree
labeled r corresponds with the sub-index of dg labeled r, and maps dst values
of the relation to a list of tree decompositions corresponding to index rm.

2.3 Physical Representations, Cross-Linking, and Fusion

In Section 2.2 we showed how to represent logical relations as tree-decompositions.
Given a relation and an accompanying index, our implementation generates a
physical representation with the structure given by the index. This representa-
tion is the concrete realization of the tree-decomposed relation in memory. Each
term in the tree-decomposition becomes an object in memory, and we use the
data structures specified in the index to lay out and link those objects together.

Sharing declarations allow the programmer to specify connections between
objects in different parts of the index. Such sharing declarations come in two fla-
vors: fusion and cross-linking. Fuse declarations indicate that the objects should
be merged, with each structure containing a pointer to the shared object, while
link operations indicate that one structure should contain a pointer to an object
in another structure. Effectively these constructs collapse the tree decomposition
into a directed acyclic graph.

www.manaraa.com

(a) (b) (c)

1

2

3

17

42

{〈1, 2, 17〉 , 〈1, 3, 42〉} 17 42

l r

msrc1 mdst2 mdst3

m
d
st

2

m dst3

msrc1 msrc1

〈17〉 〈42〉 nil

nil

nil

nil

〈1〉
〈3〉

〈2〉

〈2〉

.j
le
ft
.m

ap

.jrigh
t.m

ap

.left

.m
a
p

.next

.map

.m
ap

.u
d
at
a

.u
d
a
ta

.right

.right.left.next
.next

.left

.right

〈1〉 .mdata

〈3〉

.m
da

ta

.mdata
.ne

xt

.mdata

.mdata

.m
da

ta

.mdata

Fig. 5. Representations of a weighted directed graph: (a) An example graph,
and its representation as a relation, (b) A tree decomposition of the relation in
(a), with fused data structures shown as conjoined nodes, and (c) a diagram of
the memory state that represents (b).

In the graph example, we would like to share the weight of each edge between
the two representations. Observe that given a (src, dst) pair, the weight is the
same whether we traverse the links in the left or the right tree. That is, there
is a functional dependency: any (src, dst) pair determines a unique weight, and
it does not matter whether we visit the src or the dst first. Hence instead of
replicating the weight, we can share it between the two trees, specified here by
the fuse declaration. The declaration says that the data structure we get after
looking up a src and then a dst in the left tree should be fused with the data
structure we get by looking up a dst and then a src in the right tree.

Each join index takes an argument L which is a set of cross-linking decla-
rations (link, z1, z2) and fusion declarations (fuse, z1, z2). A cross-linking decla-
ration (link, z1, z2) states that a pointer should be maintained from each object
with static contour z1 to the corresponding object with static contour z2. Simi-
larly, a fusion declaration (fuse, z1, z2) states that objects with static contour z1
should be placed adjacent to the corresponding object with static contour z2.
By “corresponding” object we mean the object with static contour z2, whose
column values are drawn from the set bound by following static contour z1.

In the graph example, the contour rmm names the data structure we get by
looking in the right component of the join (r) and then navigating down two
map indices (mm), i.e., looking in the right tree and then following first the dst
and then the src links. The contour lmm names the corresponding location in
the left tree. The fuse declaration indicates these two nodes should be merged,
with the weight data structure from the left tree being fused with the empty
data structure from the right tree. Figure 5(b) depicts the index structure after
fusion. Figure 5(c) graphically depicts the resulting physical memory state that
represents the graph of Figure 5(b). The conjoined nodes in the figure are placed
at a constant field offset from one another on the heap.

2.4 Process Scheduler

As another example, suppose we want to represent the data for a simple operat-
ing system process scheduler (as in [13]). The scheduler maintains a list of live
processes. A live process can be in any one of a number of states, e.g. running or

www.manaraa.com

(TWfEmp) {} |=T unit(c)
(TWfUnit)

|v| = |c|
{v} |=T unit(c)

(TWfMap)
∀i ∈ I. |vi| = |c| ∀i ∈ I. ρi |=T d ∀i ∈ I. αt(ρi, d) 6= ∅

{vi 7→ ρi}i∈I |=T map(ψ, c, d)

(TWfJoin)

ρ1 |=T d1 αt(ρ1, d1) |= dom d1 ∩ dom d2 → dom d1 \ dom d2
ρ2 |=T d2 πdom d1∩dom d2 αt(ρ1, d1) = πdom d1∩dom d2 αt(ρ2, d2)

(ρ1, ρ2) |=T join(d1, d2, L)

Fig. 6. Well-formed tree decompositions: ρ |=T d

sleeping. The scheduler also maintains a list of possible process states; for each
state we maintain a tree of processes with that state. We represent the sched-
uler’s data by a relation live(pid , state, uid ,walltime, cputime), and the index

join·
(
mapl

(
btree, [pid], unitlm([uid ,walltime, cputime])

)
,

mapr
(
dlist, [state],maprm(btree, [pid], unitrmm([])

)
, {(fuse, rmm, lm)}

)
The index allows us both to efficiently find the information associated with the
pid of a particular process, and to manipulate the set of processes with any given
state and their associated data. In this case the fuse construct allows us to jump
directly between the pid entry in a per-state binary tree and the data such as
walltime and cputime associated with the process.

2.5 Minesweeper

Another example is motivated by the game of Minesweeper. A Minesweeper
board consists of a 2-dimensional matrix of cells. Each cell may or may not have
a mine; each cell may also be concealed or exposed. Every cell starts off in the
unexposed state; the goal of the game is to expose all of the cells that do not
have mines without exposing a cell containing a mine. Some implementations of
Minesweeper also implement a “peek” cheat code that iterates over the set of
unexposed cells, temporarily displaying them as exposed. We represent a board
by the relation board(x, y, ismined , isexposed), with the index:

join·
(
mapl

(
btree, [x],maplm(btree, [y], unitlmm([ismined , isexposed]))

)
,

mapr
(
slist, [isexposed],maprm(btree, [x, y], unitrmm([])

)
, {(link, rmm, lmm)}

)
In this example, the index specifies a cross-link rather than a fusion. Cross-

linking adds a pointer from one object in a tree decomposition to another object,
providing a “short-cut” from one data structure to another.

3 Abstraction, Well-formedness, and Adequacy

In this and subsequent sections we give the details of how we can specify data
structures with sharing at a high-level using relations and then faithfully trans-
late those specifications into efficient low-level representations. There are two

www.manaraa.com

main complications. First, not every index can represent every relation; we intro-
duce a notion of adequacy to characterize which relations an index can represent.
Second, our proof strategy requires two steps: first showing that the intermedi-
ate tree decomposition of a relation is correct with respect to the logical relation,
and second showing that the physical representation is correct with respect to
the tree decomposition (Sections 4 and 5).

3.1 Tree Decompositions

Abstraction Function Finally, we can relate the pieces we have defined so far.
The abstraction function αt(ρ, d) maps a tree decomposition ρ according to some
index d to the corresponding high-level logical relation, showing what relation
the tree decomposition represents:

αt(V, unit(c)) = {〈c 7→ v〉 | v ∈ V }

αt({vi 7→ ρi}i∈I ,map(ψ, c, d)) =
⋃

i∈I

(
〈c 7→ vi〉 × α(ρi, d)

)
αt((ρ1, ρ2), join(d1, d2, L)) = αt(ρ1, d1) ./ αt(ρ2, d2)

Functional Dependencies A relation r has a functional dependency (FD) B → C,
if any pair of tuples in r that are equal on the set of columns B are also equal
on columns C. We write ∆ to denote a set of functional dependencies; we write
r |= ∆ if a relation r has the set of FDs ∆. If a FD A → B is a consequence
of set of FDs ∆ we write ∆ `fd A→ B; sound and complete inference rules for
functional dependencies are standard [1].

Well-Formed Decompositions We define a class of well-formed tree decompo-
sitions ρ for an index d with a judgment ρ |=T d shown in Figure 6. The
(TWfEmp) and (TWfUnit) check that a unit node is either the empty set
or a sequence of values of the right length. The (TWfMap) rule checks that
each sequence of key values has the right length, and that there are no key values
that map to empty subtrees. The (TWfJoin) rule ensures the relation actually
has the functional dependency promised by the adequacy judgment, and that
we do not have “dangling” tuples on one side of a join without a matching tuple
on the other side. Note that rule (TWfJoin) does not place any restrictions on
the fusion declaration L; valid fusions are the subject of the physical adequacy
rules of Figure 9. We write dom d for the set of columns that appear in an index.

3.2 Logical Adequacy

Digressing briefly, we observe that we cannot decompose every relation with
every index. In general an index can only represent a class of relations satisfying
particular functional dependencies.

For our running graph example the index dg is not capable of represent-
ing every possible relation of three columns. For example, the relation r′ =
{〈1, 2, 3〉 , 〈1, 2, 4〉} cannot be represented, because dg can only represent a single
weight for each pair of src and dst vertices. However r′ does not correspond
to a well-formed graph; all well-formed graphs satisfy a functional dependency
src, dst → weight , which allows at most one weight for any pair of vertices.

www.manaraa.com

(LAUnit)
∆ `fd ∅ → c

c;∆ `l unit(c)
(LAMap)

C2;∆/c1 `l d
c1] C2;∆ `l map(ψ, c1, d)

(LAJoin)
∆ `fd C1 → C2 C1 ∪ C2;∆ `l d1 C1 ∪ C3;∆ `l d2

C1] C2] C3;∆ `l join(d1, d2, L)

where ∆/C =
{

(A \ C)→ (B \ C) | (A→ B) ∈ ∆
}

Fig. 7. Rules for logical adequacy C;∆ `l d
f ∈ {link(z1,z2), fuse(z1,z2), . . . } field names A = Z× f∗ addresses
µ : A→ A ∪ V memory Λ : dcontour → A layout

Fig. 8. Heaps

We say that an index d is adequate for a class of relations R if for every
relation r ∈ R there is some tree decomposition ρ such that αt(ρ, d) = r. Figure 7
lists inference rules for a judgment C;∆ `l d that is a sufficient condition for an
index to be adequate for the class of relations with columns C that satisfy a set
of FDs ∆. The inference rules enforce two properties. Firstly, the (LAUnit) and
(LAMap) rules ensure that every column of a relation must be represented by
the index; every column must appear in a unit or map index. Secondly, in order
to split a relation into two parts using a join index, the (LAJoin) rule requires
a functional dependency to prevent anomalies such as spurious tuples.

We have the following lemma:

Lemma 1 (Soundness of Adequacy Judgement). If C;∆ `l d then for
each relation r with columns C such that r |= ∆ there is some ρ such that
ρ |=T d and αt(ρ, d) = r.

3.3 Physical Representation

Heaps. Figure 8 defines the syntax for our model of memory. We represent the
heap as function µ from a set of heap locations to a set of heap values. Our model
of a heap location is based on C structs, except that we abstract away the layout
of fields within each heap object. Heap locations are drawn from an infinite set A,
and consist of a pair (n, f) of a integer address identifying a heap object, together
with a string of field offsets; each integer location notionally has a infinite number
of field slots, although we only ever use a small and bounded number, which can
then be laid out in consecutive memory locations. The contents of each heap cell
can either be a value drawn from V or an address drawn from A; we assume that
the two sets are disjoint.

The set of columns that are bound by following a static contour z is given
by the function bound(z, d), defined as

bound(·, d) = ∅ bound(mz,map(ψ, c, d)) = c ∪ bound(z, d)
bound(lz, join(d1, d2, L)) = bound(z, d1) bound(rz, join(d1, d2, L)) = bound(z, d2)

Layouts. We use dynamic contours to name positions in a tree. A layout function
Λ is a mapping from the dynamic contours of a tree to addresses from A. Layout

www.manaraa.com

(PAUnit)

∆;Φ `p unit(c)
(PAMap)

∆/c1; {x | mx ∈ Φ} `p d
∆;Φ `p map(ψ, c1, d)

(PAJoin)

∀l ∈ L.∆;Φ `p d; l Φ′ = Φ ∪ {z | (fuse, z, z′) ∈ L}
∆; {x | lx ∈ Φ′} `p d1 ∆; {x | rx ∈ Φ′} `p d1

∆;Φ `p join(d1, d2, L)

(PALink)

bound(rz1m, d) ⊇ bound(lz2, d)

∆;Φ `p d; (link, rz1m, lz2)

(PAFuse)

rz1m /∈ Φ bound(rz1m, d) = bound(lz2, d)

∆;Φ `p d; (fuse, rz1m, lz2)

Fig. 9. Rules for physical adequacy ∆;Φ `p d [; l]

functions allow us to translate from semantic names for memory locations to a
more machine-level description of the heap; the extra layer of indirection allows
us to ignore details of memory managers and layout policies, and to describe
fusion and cross-linking succinctly. All layouts must be injective; that is, different
tree locations must map to different physical locations. We define operators that
strip and add prefixes to the domain of a layout

Λ/x = {y 7→ a | (xy 7→ a) ∈ Λ}, and Λ× x = {xy 7→ a | (y 7→ a) ∈ Λ}.

Data Structures. In our present implementation, a map index can be represented
by an option type (option), a singly-linked list (slist), a doubly-linked list (dlist),
or a binary tree (btree). It is straightforward to extend the set of data structures
by implementing a common data structure interface—we present this partic-
ular selection merely for concreteness. The common interface views each data
structure as a set of key-value pairs, which is a good fit to a many, but not all
possible data structures. Each data structure must provide low-level functions:
pemptyψ a which creates a new structure with its root pointer located at address
a, pisemptyψ a which tests emptiness of the structure rooted at a, plookupψ a v
which returns the address a′ of the entry with value v, if any, pscanψ a which
returns the set of all (a′,v) pairs of a value v and its address a′, pinsertψ a v a′

which inserts a new value v into the data structure rooted at address a′, and
premoveψ a v a′ which removes a value v at address a′ from a data structure.
Typical implementations can be found in the tech report [10].

For cross-linking and fusion to be well-defined in an index d, we need d to
be physically adequate. This condition ensures that for cross-linking and fusion
operations between static contours z1 and z2, the mapping from z1 to z2 is a
function for each cross-link declaration and an injective function for each fusion
declaration. Further, as fusions constrain the location of an object in memory,
we require any object is fused at most once for feasibility. We use the judgment
form ∆;Φ `p d and the associated rules in Figure 9 to indicate that index d
is physically adequate for functional dependencies ∆ where Φ denotes the set
of static contours that have already been fused. The (PALink) and (PAFuse)
rules ensure a suitable mapping by requiring the set of fields bound by the target
contour of a link be a subset of the set of fields bound by the source contour;
in the case of a fusion we require equality. The rule (PAFuse) ensures that no
contour is fused twice. We assume that all indices are physically adequate.

www.manaraa.com

Abstraction Function We define a second abstraction function αm(µ, a, d) = ρ,
which given a memory state µ, root address a, and an index d constructs the
corresponding tree decomposition ρ:

αm(µ, a, unit(c)) = if !a.ulen = 0 then {} else {!a.udata}
αm(µ, a,map(ψ, c, d)) = {v 7→ αm(µ, a′, d) | (v, a′) ∈ pscanψ a.map}
αm(µ, a, join(d1, d2, L)) = (αm(µ, a.jleft, d1), αm(µ, a.jright, d2))

4 Queries

Up to this point we have focused on defining how relations are represented as
data structures; now we turn to describing how high-level queries on relations
correspond to low-level sequences of operations traversing those data structures.
Recall that we define a query operation that extracts the set of tuples in a
relation whose fields match a tuple pattern, i.e., query r t = r ./ t, where
dom t ⊆ dom r. We define query plans on the data structure representation, and
establish sufficient conditions for a query plan to be valid, meaning that the query
plan correctly implements a particular query on both the tree decomposition and
physical representations.

One problem we do not address is selecting an efficient query plan from all
possible valid query plans, but we can make a few observations. First, there is
always a trivial valid query plan that uses the entire index; more efficient plans
avoid traversing parts of data structures unneeded for a particular query. Second,
all possible query plans can be enumerated and checked for validity; there are
only so many ways to traverse an index. Finally, we expect that profile-directed
database methods for selecting good query plans can be adapted to our setting;
we leave that as future work.

4.1 Query Plans

A query plan is a tree of query plan operators, which take as input a query
state, a pair (t,y) of a tuple pattern t and a dynamic contour y, and produce
as output a set of tuples. The input tuple t maps previously bound variables to
their values, whereas the dynamic contour represents the position in the index
tree to which the query operator applies. Query plans are defined inductively:
None The qnone operator determines whether an index is empty or non-empty,

and returns either the empty set {} or the singleton set {〈〉} respectively.
Unit The qunit operator returns the tuple represented by a unit index, if any.
Scan The qscan(q′) operator retrieves the list of key values that match t in a

map index and invokes query operator q′ for each sub-tree. Since the qscan
operator iterates over the contents of a map data structure, it typically takes
time linear in the number of entries in the map.

Lookup The qlookup(q′) operator looks up a particular sequence of key values
in a map(ψ, c, d) index; each of the key columns must be bound in the input
tuple t. Query operator q′ is invoked on the relevant subtree, if any. The
complexity of the qlookup depends on the particular choice of data structure
ψ; in general we expect qlookup to have better time complexity than qscan.

Left/Right Join The qljoin(q1, q2) operator first executes query q1 in the left
subtree of a join index, then executes query q2 in the right subtree, and

www.manaraa.com

returns the natural join of the two results. The qrjoin(q1, q2) operator is sim-
ilar, but executes the two queries in the opposite order. Both joins produce
identical results, however the computational complexity may differ.

Fuse Join The qfusejoin(z0, l, q1, q2) operator switches the current index data
structure by following a fuse or cross-link l and executes query q2; it then
switches back to the original location and executes q1. The result is the
natural join of the two sub-queries. Parameter z0 identifies the join index
that contains l; position y must be an instantiation of the source of l.

For example, suppose in the directed graph example of Section 2.1 we want
to find the set of successors of graph vertex 1, together with their edge weights.
Figure 10 depicts one possible, albeit inefficient, query plan q consisting of the
operations

q = qrjoin(qnone, qscan(qlookup(qfusejoin(·, (fuse, rmm, lmm), qunit, qunit)))).

Intuitively, to execute this plan we use the right-hand side of the join to
iterate over every possible value for the dst field. For each dst value we check
to see whether there is a src value that matches the query input, and if so we
use a fuse join to jump over to the left-hand side of the join and retrieve the
corresponding weight. (A better query plan would look up the src on the left-
hand side of the join first, and then iterate over the set of corresponding dst
nodes and their weights, but our goal here is to demonstrate the role of the
qfusejoin operator.)

To find successors using query plan q, we again start with the state (〈src 7→ 1〉 , ·).
Since the left branch of the join is qnone, the join reduces to a recursive execution
of the query qscan(· · ·) with input (〈src 7→ 1〉 , r). The qscan recursively invokes
qlookup on each of the states (〈src 7→ 1, dst 7→ 2〉 , rm2) and (〈src 7→ 1, dst 7→ 3〉 , rm3).

qunitqunit

qnone

qrjoin

qscan

qlookup

qfusejoin

l r

msrc mdst

mdst msrc

Fig. 10. One possible
query plan for the graph
example of Section 2.1

The qlookup operator in turn recursively invokes the
qfusejoin operator on (〈src 7→ 1, dst 7→ 2〉 , rm2m1)
and the state (〈src 7→ 1, dst 7→ 3〉 , rm3m1). To exe-
cute its second query argument the fuse join maps
each instantiation of contour rmm to the corre-
sponding instantiation of contour lmm; we are guar-
anteed that exactly one such contour instantia-
tion exists by index adequacy. The fuse join pro-
duces the states (〈src 7→ 1, dst 7→ 2〉 , lm1m2) and
(〈src 7→ 1, dst 7→ 3〉 , lm1m3). Finally the invocations
of qunit on each state produces the tuples

{〈src 7→ 1, dst 7→ 2,weight 7→ 17〉 ,
〈src 7→ 1, dst 7→ 3,weight 7→ 17〉}.

We need a criteria for determining whether a
particular query plan does in fact return all of the
tuples that match a pattern. We say a query plan is
valid, written d, z, X `q q, Y if q correctly answers
queries in index d at dynamic instantiations of con-
tour z, where X is the set of columns bound in the
input tuple pattern t and Y is the set of columns
bound in the output tuples (see the tech report [10]).

www.manaraa.com

5 Relational Operations

In this section we describe implementations for the primitive relation operators
for the tree-decomposition and physical representations of a relation, and we
prove our main result: that these primitive operators are sound with respect to
their higher-level specification. Complete code is given in the tech report [10].

5.1 Operators on the Tree Decomposition

We implement queries over tree decompositions by a function tquery d t ρ, which
finds tuples matching pattern t over tree decompositions ρ under index d. The
core routine is a function tqexec ρ d q t y which, given a tree decomposition ρ,
index d, and a tuple t, executes plan q at the position of the dynamic contour y.

Creation/update are handled by tempty d, which constructs a new empty
relation with index d, tinsert d t ρ, which inserts a tuple t into a tree-decomposed
relation ρ with index d, and tremove d t ρ which removes a tuple t from a tree-
decomposed relation ρ with index d. It is the client’s responsibility to ensure that
functional dependencies are not violated; the implementation contains dynamic
checks that abort if the client fails to comply. These checks can be removed if
there is an external guarantee that the client will never violate the dependencies.

To show that the primitive operations on tree decompositions faithfully im-
plement the corresponding primitive operations on logical relations, we first show
executing valid queries over tree decompositions soundly implements logical tu-
ple pattern queries. We then prove a soundness result by induction.

Lemma 2 (Tree Decomposition Query Soundness). For all ρ, r, d such
that ρ |=T d and αt(ρ, d) = r, if d, ·,dom t `q q,dom d for a tuple pattern t and
query plan q we have tqexec ρ d q t · = query r t.

Theorem 1 (Tree Decomposition Soundness). Suppose a sequence of insert
and remove operators starting from the empty relation produce a relation r. The
corresponding sequence of tinsert and tremove operators given tempty d as input
either produce ρ such that ρ |=T d and αt(ρ, d) = r, or abort with an error.

5.2 Physical Representation Operators

In this section we describe implementations of each of the primitive relation
operations that operate over the physical representation of a relation. We prove
soundness of the physical implementation with respect to the tree decomposition.
For space reasons we omit the code for physical operators but we give a brief
synopsis of each function; for a complete definition see the full paper [10].

We implement physical queries via a query execution function pqexec d q y a y.
Function pqexec is structurally very similar to the query execution function
tqexec over tree decompositions. Instead of a tree decomposition ρ the physical
function accesses the heap, and in place of a dynamic contour y the physical
function represents a position in the data structure by a pair (z, a) of a static
contour z and an address a. The main difference in implementation is that the
qfusejoin case follows a fusion or cross-link simply by performing pointer arith-
metic or a pointer dereference, respectively, rather than traversing the index.

Creation/update are handled by pempty d a (creates an empty relation with
index d rooted at address a), pinsert d t a (inserts tuple t into a relation with

www.manaraa.com

index d rooted at a), and premove d t a (removes tuple t). The main difference
with corresponding operations on the tree decomposition is in pinsert, which
needs to create fusions and cross-links. To fuse two nodes we simply place the
data of a node being fused in a subfield of the node into which it is fused. To
create a cross-link, we first construct the tree structure and then add pointers
between each pair of linked nodes.

Analogous to the soundness proof for tree decompositions, we prove sound-
ness by proving a set of commutative diagrams relating physical representa-
tions of relations with their tree decomposition counterparts. We need a well-
formedness invariant for physical states. A memory state µ is well-formed for
index d with layout Λ if there exists an injective function Λ such that the judg-
ment µ;Λ |=p d holds, defined by the inference rules in [10].

We show that valid queries over physical memory states are sound with re-
spect to the tree decomposition. We then show soundness by induction.

Lemma 3 (Physical Query Soundness). Suppose we have µ;Λ |=p d and
αm(µ,Λ(·), d) = ρ for some µ,Λ, d. Then for all queries q and tuples t such that
d, ·,dom t `q q,dom d we have pqexec d q t a · = tqexec ρ d q t ·, where pqexec
is executed in memory state µ.

Theorem 2 (Physical Soundness). Let d be an index, and suppose a sequence
of tinsert and tremove operators starting from the ρ = tempty d produce a relation
ρ′. Let µ be the heap produced by pempty d a where a is a location initially present
in the heap. Then the corresponding sequence of pinsert and premove operators
given µ as input either produce a memory state µ′ such that µ′;Λ |=p d for some
Λ and αm(µ, a, d) = ρ′, or abort with an error.

6 Related Work

Relations Many authors propose adding relations to both general- and special-
purpose programming languages (e.g., [3; 15; 19; 16]). We focus on the orthog-
onal problem of specifying and implementing shared representations for data.
Our approach can benefit from much of this past work; in particular, database
techniques for query planning are likely to prove useful.

Automatic Data Structure Selection Automatic data structure selection was
studied in SETL [20; 4; 17] and has also been pursued for Java collection im-
plementations [21]. Our index language describes a mapping between abstract
data and its concrete implementations with a similar goal to [7]. We focus on
composing and expressing sharing between data structures which is important in
many practical situations. Our work can be combined with static and dynamic
techniques to infer suitable data structures.

Specifying Shared Representations Graph types [11] extend tree-structured types
with extra pointers functionally determined by the structure of the tree back-
bone. One way to view our cross-linking and fusion constructs is adding extra
pointers determined by the semantics of data and not by its structure. Separa-
tion Logic allows elegant specifications of disjoint data structures [18]. Various
extensions of separation logic enable proofs about some types of sharing [2; 8].

www.manaraa.com

Inferring Shared Representations Some static analysis algorithms infer some
sharing between data structures in low level code [13; 12]. In contrast we allow the
programmer to specify sharing in a concise way and guarantee consistency only
assuming that functional dependencies are maintained. Functional dependencies
or their equivalent are an essential invariant for any shared data structure.

Verification Approaches The Hob system uses abstract sets of objects to specify
and verify properties that characterize how multiple data structures share ob-
jects [14]. Monotonic typestates enable aliased objects to monotonically change
their typestates in the presence of sharing without violating type safety [9]. Re-
searchers have developed systems to mechanically verify data structures (e.g.,
hash tables) that implement binary relational interfaces [22; 5]. The relation im-
plementation presented here is more general, allowing relations of arbitrary arity
and substantially more sophisticated data structures than previous research.

7 Conclusion

We have presented a system for specifying and operating on data structures at
a high level as relations while implementing those relations as the composition
of low-level pointer data structures. Most unusually we can express, and prove
correct, the use of complex sharing in the low-level representation, allowing us to
express many practical examples beyond the capabilities of previous techniques.

Bibliography

[1] C. Beeri, R. Fagin, and J. H. Howard. A complete axiomatization for functional
and multivalued dependencies in database relations. In SIGMOD, pages 47–61.
ACM, 1977.

[2] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.
Shape analysis for composite data structures. In CAV, pages 178–192, 2007.

[3] G. Bierman and A. Wren. First-class relationships in an object-oriented language.
In ECOOP, volume 3586 of LNCS, pages 262–286, 2005.

[4] J. Cai and R. Paige. “Look ma, no hashing, and no arrays neither”. In POPL,
pages 143–154, 1991.

[5] A. J. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effective
interactive proofs for higher-order imperative programs. In ICFP, pages 79–90,
2009.

[6] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, 1970.

[7] R. B. K. Dewar, A. Grand, S.-C. Liu, J. T. Schwartz, and E. Schonberg. Pro-
gramming by refinement, as exemplified by the SETL representation sublanguage.
ACM Trans. Program. Lang. Syst., 1(1):27–49, 1979.

[8] D. Distefano and M. J. Parkinson. jStar: towards practical verification for Java.
In OOPSLA, pages 213–226, 2008.

[9] M. Fahndrich and R. Leino. Heap monotonic typestates. In Int. Work. on Alias
Confinement and Ownership, July 2003.

[10] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv. Data structure fusion
(full), 2010. URL http://theory.stanford.edu/˜hawkinsp/papers/rel-full.pdf.

[11] N. Klarlund and M. I. Schwartzbach. Graph types. In POPL, pages 196–205,
Charleston, South Carolina, 1993. ACM.

www.manaraa.com

[12] J. Kreiker, H. Seidl, and V. Vojdani. Shape analysis of low-level C with overlapping
structures. In Proceedings of VMCAI, volume 5044 of LNCS, pages 214–230, 2010.

[13] V. Kuncak, P. Lam, and M. Rinard. Role analysis. In POPL, pages 17–32, 2002.
[14] P. Lam, V. Kuncak, and M. C. Rinard. Generalized typestate checking for data

structure consistency. In VMCAI, pages 430–447, 2005.
[15] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling objects, relations

and XML in the .NET framework. In SIGMOD, page 706. ACM, 2006.
[16] C. Olston et al. Pig Latin: A not-so-foreign language for data processing. In

SIGMOD, June 2008.
[17] R. Paige and F. Henglein. Mechanical translation of set theoretic problem speci-

fications into efficient RAM code. J. Sym. Com., 4(2):207–232, 1987.
[18] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, 2002. Invited paper.
[19] T. Rothamel and Y. A. Liu. Efficient implementation of tuple pattern based

retrieval. In PEPM, pages 81–90. ACM, 2007.
[20] E. Schonberg, J. T. Schwartz, and M. Sharir. Automatic data structure selection

in SETL. In POPL, pages 197–210, 1979.
[21] O. Shacham, M. Vechev, and E. Yahav. Chameleon: adaptive selection of collec-

tions. In PLDI, pages 408–418, 2009.
[22] K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data

structures. In PLDI, pages 349–361, 2008.

